Now that we know how to calculate force,
let's compute the Coulomb force:

$$\chi' = -\frac{1}{4} F_{mv} F^{mv} = -\frac{1}{4} F_{mv} F_{8A} g^{8m} g^{2v}$$

$$(\partial_{0}A_{i})^{2} \text{ term has to have positive sign!}$$
where $F_{mv} = \partial_{a} Av - \partial_{v} A_{n}$, $g_{mv} = \begin{pmatrix} 1 - 0 \\ 0 - 1 \\ 0 \end{pmatrix}$

$$\rightarrow add mass for photon$$
(send to zero later):

$$\chi' = \chi + \frac{1}{2} m^{2} A_{n} A^{m} + A_{n} f^{m}$$
assume $\partial_{n} f^{m} = 0$ current
"current is conserved"

$$\Rightarrow Z[f] = \int DA e^{iS(A)} = e^{iW[f]}$$
where

$$S(A) = \int d^{f} \chi \chi'$$

$$= \int d^{f} \chi (\frac{1}{2} A_{n} (\partial^{2} + m^{2})g^{mv} - \partial^{-}\partial^{v}] A_{v} + A_{m} f^{m}$$
have integrated
by parts
(*) $[(\partial^{2} + m^{2})g^{mv} - \partial^{m}\partial^{v}] D_{rn}(x) - S^{-} S^{W}(x)$

Define momentum space propagato:

$$D_{vn}(x) = \int \frac{d^{4}k}{(2\pi)^{4}} D_{vn}(k)e^{ik\cdot x}$$
Plugging into (x), we find

$$\begin{bmatrix} -(k^{2} - m^{2})g^{mv} + K^{m}K^{v} \end{bmatrix} D_{vn}(k) = \delta_{n}^{m}$$

$$\rightarrow D_{vn}(k) = \frac{-9vn + k_{v}k_{n}/m^{2}}{K^{2} - m^{2}} \qquad \begin{array}{c} macsive \\ meson \\ meson$$

Now
$$W[J] = -\frac{1}{2} \int \frac{d^4\kappa}{(2\pi)^4} J^{(\kappa)*} \frac{-g_{mn} + K_m k_n/m^2}{\kappa^2 - m^2 + i\epsilon} J^{(\kappa)}$$

 $0 = \sum_n J^m \iff K_n J^m = 0$
 $\longrightarrow W[J] = \frac{1}{2} \int \frac{d^4\kappa}{(2\pi)^4} J^{(\kappa)*} \frac{1}{\kappa^2 - m^2 + i\epsilon} J_m(\kappa)$
We see that the sign is opposite to
the q-theory from last lecture !
 $E = \frac{1}{4\pi r} e^{-mr}$
now send $m \to 0 \implies E \to \frac{1}{4\pi r}$
 $\stackrel{\sim}{\longrightarrow} F = \overline{\nabla}E = -\frac{\overline{e_v}}{4\pi r^2}$
"repulsive force, decreasing quadratically
with distance"
To accommodate positive / negative
charges, we write $J^m = J_p^m - J_m^m$
 $\rightarrow lump with charge density J_p^m
is attracted to lump with
charge density $J^m$$

Let us now look into gravity!

$$\rightarrow$$
 described by spin 2 particle
 $h_{mv}(x) \rightarrow D_{mv,8\pi}(x) = \sum_{mv} \sum_{(k) \in g_{\pi}(x)}^{(m)} \sum_{(k) \in g_{\pi}(x)}^{$

Thus we compute

$$W(T) = -\frac{1}{2} \int \frac{d^4 \kappa}{(2\pi)^4} T^{m}(\kappa)^* \frac{(G_m G_{\nu\sigma} + G_{n\sigma} G_m) - \frac{1}{2} G_m G_{\sigma} T^{3} \xi)}{\kappa^2 - m^2}$$
conservation of energy and momentum
implies $\partial_m T^{m} = 0 \longrightarrow \kappa_m T^{m}(\kappa) = 0$
 \rightarrow replace $G_{m\nu}$ by $g_{m\nu}$
Zooking at the interaction between
two lumps of energy density T^{oo} , we get
 $W(T) = -\frac{1}{2} \int \frac{d^4 \kappa}{(4\pi)^4} T^{oo}(\kappa)^* \frac{1+1-\frac{2}{3}}{\kappa^2 - m^2 + i\Sigma} T^{oo}(\kappa)$
As $(1+1-\frac{2}{5}) > 0$, we see that
magses attract each other !

So far our quantum fields were
composed of harmonic oscillators
-> let us now introduce anharmonic terms

$$Z[T] = \int \mathcal{D} \varphi e^{i\int d_{\infty}^{4}(\frac{1}{2}[\Theta\varphi]^{2}-m^{2}\varphi^{2}]-\frac{\lambda}{4!}\varphi^{4}f\varphi)}$$

anharmonic
interaction
-> the above integral is not gaussian!
What should we do?
Feynman diagrams
 $Z[T] = \int dq e^{-\frac{1}{2}m^{2}q^{2}} - \frac{\lambda}{4!}q^{4} + \frac{1}{2}q$
 $Z[T] = \int dq e^{-\frac{1}{2}m^{2}q^{2}} - \frac{\lambda}{4!}q^{4} + \frac{1}{2}q$
 $Z[T] = \int dq e^{-\frac{1}{2}m^{2}q^{2}} - \frac{\lambda}{4!}q^{4} + \frac{1}{2}q$
 $Z[T] = \int dq e^{-\frac{1}{2}m^{2}q^{2}} + \frac{1}{2}q^{2} + \frac{1}{2}(\frac{\lambda}{4!})^{2}q^{4} + \dots]$
and integrate term by term.

This can be rewritten as:

$$Z[J]$$

$$= (1 - \frac{\lambda}{4!} (\frac{d}{4!})^{4} + \frac{1}{2} (\frac{\lambda}{4!})^{2} (\frac{d}{4!})^{8} + \cdots) \int dq e^{-\frac{1}{2}m^{2}q^{2}} Jq$$

$$= e^{-\frac{\lambda}{4!} (\frac{d}{4!})^{4}} \int dq e^{-\frac{1}{2}m^{2}q^{2}} Jq$$

$$= \frac{2\pi}{(m^{2})^{1}} e^{-\frac{\lambda}{4!} (\frac{d}{4!})^{4}} e^{\frac{1}{2}m^{2}} J^{2}$$

$$= Z[J=0, \lambda=0] =: Z[0,0]$$
and define $Z[J] = Z[J]/Z[0,0]$
Buppose we want to compute the
(a) term of order λ and J^{4} in Z .
 $\rightarrow extract order J^{8} term in $e^{\frac{1}{2}m^{2}}$.
 $\rightarrow extract order J^{8}$ term in $e^{\frac{1}{2}m^{2}}$.
 $by - \frac{\lambda}{4!} (\frac{d}{4!})^{4}$, and differentiate to
 $gct \frac{8!}{(4!)^{2}(m^{2})^{4}} J^{4}$
(b) another example: term of order λ^{2} and J^{5} is
 $\frac{1}{\lambda} (\frac{\lambda}{4!})^{2} (\frac{1}{2!(2m^{2})^{2}}) J^{4} = \frac{14!(2n^{2})^{2}}{(4!)^{5}!2!2(2m^{2})^{7}} J^{6}$$

$$\frac{\text{Wick contraction:}}{\text{Alternatively, we can expand in powers of $\mathcal{T}: \\ \mathcal{T}: \\$$$