Now that we know how to calculate force, let's compute the Coulomb force:

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}=-\frac{1}{4} F_{\mu \nu} F_{8 \lambda} g^{8 \mu} g^{\lambda \nu}
$$ $\left(\partial_{0} A_{i}\right)^{2}$ term has to have positive sign! where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, g_{\mu \nu}=\left(\begin{array}{cc}1 & 0 \\ 0^{-1} & -1\end{array}\right)$

\rightarrow add mass for photon (send to zero later):

$$
\mathscr{L}^{\prime}=\mathscr{L}+\frac{1}{2} m^{2} A_{\mu} A^{\mu}+A_{m} \mathcal{Y}^{\mu}
$$

assume $\partial_{m} \gamma^{\mu}=0$
"current is conserved"

$$
\rightarrow Z[7]=\int D A e^{i S(A)}=e^{i \omega[J]}
$$

where

$$
\left.\begin{array}{rl}
S(A) & =\int d^{4} \times \mathcal{L}^{\prime} \\
& =\int d^{4} \times\left(\frac{1}{2} A_{m}\left[\left(\partial^{2}+m^{2}\right) g^{m v}-\partial^{\mu} \partial^{2}\right] A_{\nu}+A_{\mu} \mu^{\mu}\right) \\
\text { have integrated }
\end{array}\right)
$$ current

(*) $\quad\left[\left(\partial^{2}+m^{2}\right) g^{\mu \nu}-\partial^{\mu} \partial^{\nu}\right] D_{\nu \lambda}(x)=\delta_{\lambda}^{\mu} \delta^{(4)}(x)$

Define momentum space propagator:

$$
D_{\nu \lambda}(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} D_{\nu \lambda}(k) e^{i k \cdot x}
$$

Plugging into (*), we find

$$
\begin{gathered}
{\left[-\left(k^{2}-m^{2}\right) g^{m \nu}+k^{m} k^{\nu}\right] D_{\nu \lambda}(k)=\delta_{\lambda}^{\mu}} \\
\rightarrow \\
D_{\nu \lambda}(k)=\frac{-g_{\nu \lambda}+k_{\nu} k_{\lambda} / m^{2}}{k^{2}-m^{2}} \quad \begin{array}{l}
\text { "massive } \\
\text { propacagator" }
\end{array}
\end{gathered}
$$

Alternatively, use

$$
\left.D_{r \lambda}(x) \frac{0}{\lambda}<0\left|T\left[A_{2}(0) A_{\lambda}(x)\right]\right| 0\right\rangle
$$

Lecture 2 polarization

$$
A_{m}(x)=\int_{\mu} \frac{d^{3} k}{(d \pi)^{3} 2 \omega_{k}} \sum_{\sigma=1}^{3}\left[e^{i k \cdot x} \varepsilon_{m}^{(\sigma)}(k) a(k)+e^{-i k \cdot x} \varepsilon_{\mu}^{(\sigma)^{x}+} a^{(k)}\right]
$$

with "Lorentz gauge": $\partial_{\mu} A^{\mu}=0 \rightarrow k^{n} \xi_{n=0}$
$\rightarrow 3$ linearly independent polarizations Then $D_{\nu \lambda}(k)=\frac{\sum_{\sigma} \sum_{\nu}^{(\sigma)}(k) \sum_{\lambda}^{(\sigma)^{*}}(k)}{k^{2}-m^{2}+i \varepsilon}$

$$
\begin{aligned}
K^{\mu} \varepsilon_{\mu} & =0 \longrightarrow K^{\nu} D_{\nu \lambda} \stackrel{!}{=} 0 \\
& \rightarrow \sum_{\sigma} \varepsilon_{\nu}^{(\sigma)} \Sigma_{\lambda}^{(\sigma)^{*}} \sim-g_{\nu \lambda}+\frac{K_{\nu} K_{\lambda}}{m^{2}}
\end{aligned}
$$

unique solution up to positive propor tionclity constr.!

Now $W[J]=-\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \gamma^{m}(k)^{*} \frac{-g_{\mu v}+k_{m} k_{2} / m^{2}}{k^{2}-m^{2}+i \varepsilon} \gamma^{2}(k)$

$$
\begin{aligned}
& 0=\partial_{\mu} J^{\mu} \longleftrightarrow k_{\mu} J^{\mu}=0 \\
& \longrightarrow W[\gamma]=\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \gamma^{\mu}(k)^{*} \frac{1}{k^{2}-m^{2}+i \varepsilon} \gamma_{\mu}(k)
\end{aligned}
$$

We see that the sign is opposite to the φ-theory from last lecture!

$$
E=\frac{1}{4 \pi r} e^{-m r}
$$

now send $m \rightarrow 0 \Rightarrow E \rightarrow \frac{1}{4 \pi r}$

$$
\rightarrow \quad \vec{F}=\vec{\nabla} E=-\frac{\vec{e}_{v}}{4 \pi r^{2}}
$$

"repulsive force, decreasing quadratically with distance"
To accommodate positive/negative charges, we write $\gamma^{\mu}=\gamma_{p}^{m}-\gamma_{n}^{m}$
\rightarrow lump with charge density J_{p}^{0} is attracted to lump with charge density F°

Let us now look into gravity!
\rightarrow described by spin 2 particle

$$
h_{\mu v}(x) \rightarrow D_{\mu v, 8 \lambda}(k)=\frac{\sum_{\sigma} \Sigma_{\mu v}^{(\sigma)}(k) \sum_{g \lambda}^{(\sigma)}(k)^{*}}{k^{2}-m^{2}}
$$

characterized by 5 polarization tensors

$$
\varepsilon_{\mu v}^{(a)}(a=1,2, \ldots, 5)
$$

satisfying $\quad K_{(a)^{m} \sum_{(a)}^{(a)}}^{m}=0, g_{\sum_{m}^{m v}(c)}^{(a)}=0$
(gauge conditions)
graviton $\sum_{\text {ur v }}$ arises from perturbations of metric of spacetime (general relativity)
\rightarrow symmetric Lorentz tensor, has 4. $5 / 2=10$ components
(a) $\rightarrow 4$ conditions
(b) $\rightarrow 1$ condition
$L 10-4-1=5$ independent comp.
\rightarrow solution:

$$
\begin{aligned}
\sum_{a} \sum_{\mu v}^{(a)}(k) \Sigma_{\lambda \sigma}^{(a)}(k) & =\left(G_{m \nu} G_{\nu \sigma}+G_{\mu \sigma} G_{2 \lambda}\right) \\
& \text { (exercise) }
\end{aligned}
$$

Thus we compute

$$
\begin{aligned}
& W(T) \\
& =-\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} T^{\mu \nu}(k)^{*} \frac{\left(G_{m \lambda} G_{\nu \sigma}+G_{\mu \sigma} G_{\nu \lambda}\right)-\frac{2}{3} G_{\mu \nu} G_{2 \sigma}}{k^{2}-m^{2}} T^{\lambda \sigma}(k)
\end{aligned}
$$

conservation of energy and momentum implies $\partial_{m} T^{\mu \nu}=0 \rightarrow k_{n} T^{\mu \nu}(k)=0$
\rightarrow replace $G_{n v}$ by $g_{u v}$
Looking at the interaction between two lumps of energy density T^{∞}, we get

$$
W(T)=-\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} T^{\infty}(k)^{*} \frac{1+1-\frac{2}{3}}{k^{2}-m^{2}+i \Sigma} T^{00}(k)
$$

As $\left(1+1-\frac{2}{3}\right)>0$, we see that masses attract each other!
§1.5 Feynman Diagrams
So far our quantum fields were composed of harmonic oscillators
\rightarrow let us now introduce anhamonic terms

$$
Z[J]=\int \mathcal{D} \varphi e^{i \int d^{4} x\left(\frac{1}{2}\left[(\partial \varphi)^{2}-m^{2} \varphi^{2}\right]-\frac{\lambda}{4!} \varphi^{4}+J \varphi\right)}
$$

enharmonic interaction
\rightarrow the above integral is not gaussian! What should we do?

Feynman diagrams
Let's start with a simpler "baby problem":

$$
Z[\gamma]=\int_{-\infty}^{\infty} d q e^{-\frac{1}{2} m^{2} q^{2}-\frac{\lambda}{4!} q^{4}+j_{q}}
$$

Let us series expand in λ

$$
=\int_{-\infty}^{\infty} d q e^{-\frac{1}{2} m^{2} q^{2}+7 q}\left[1-\frac{\lambda}{4!} q^{4}+\frac{1}{2}\left(\frac{\lambda}{4!}\right)^{2} q^{8}+\ldots\right]
$$

and integrate term by term.

This can be rewritten as:

$$
\begin{aligned}
& Z[7] \\
= & \left(1-\frac{\lambda}{4!}\left(\frac{d}{d \gamma}\right)^{4}+\frac{1}{2}\left(\frac{\lambda}{4!}\right)^{2}\left(\frac{d}{d \gamma}\right)^{8}+\cdots\right) \int_{-\infty}^{\infty} d q e^{-\frac{1}{2} m^{2} q^{2}+7 q} \\
= & e^{-\frac{\lambda}{4!}\left(\frac{d}{d \gamma}\right)^{4}} \int_{-\infty}^{\infty} d q e^{-\frac{1}{2} m^{2} q^{2}+7 q} \\
= & \underbrace{\left(\frac{2 \pi}{m^{2}}\right)^{2}} e^{-\frac{\lambda}{4!}\left(\frac{d}{d \gamma}\right)^{4}} e^{\frac{1}{2 m^{2}} J^{2}} \\
= & Z[\gamma=0, \lambda=0]=Z[0,0]
\end{aligned}
$$

and define $\tilde{Z}[J]=Z[J] / Z[0,0]$
Suppose we want to compute the (a) term of order λ and \mathcal{J}^{4} in \widetilde{Z}.
\rightarrow extract order j^{8} term in $e^{\mathrm{r}^{2} / 2 \mathrm{~m}^{2}}$, namely $\frac{1}{4!\left(2 m^{2}\right)^{4}} \gamma^{8}$, replace $e^{-\left(\frac{d}{4!}\right)\left(\frac{d}{d \gamma}\right)^{4}}$ by $-\frac{\lambda}{4!}\left(\frac{d}{d \gamma}\right)^{4}$, and differentiate to get $\frac{8!(-\lambda)}{(4!)^{3}\left(2 m^{2}\right)^{4}} J^{4}$
(b) another example: term of order λ^{2} and y^{6} is

$$
\frac{1}{2}\left(\frac{\lambda}{41}\right)^{2}\left(\frac{d}{d \gamma}\right)^{8}\left(\frac{1}{7!\left(2 m^{2}\right)^{7}}\right) J^{14}=\frac{141(-\lambda)^{2}}{(4!)^{8}!7!2\left(2\left(m^{2}\right)^{7}\right.} J^{6}
$$

These calculations can be depicted diagrammatically:
(a)

(b):

\rightarrow rules:

1) for each vertex assign - λ
2) for each line $\frac{1}{m^{2}}$
3) for each external leg assign y

Wick contraction:
Alternatively, we can expand in powers of F :

$$
\begin{aligned}
Z[7] & =\sum_{s=0}^{\infty} \frac{1}{s!} \gamma^{s} \int_{-\infty}^{\infty} d q e^{-\frac{1}{2} m^{2} q^{2}-\left(\frac{3}{4}\right) q^{4}} q^{s} \\
& =Z[0,0] \sum_{s=0}^{\infty} \frac{1}{\delta!} \gamma^{s} G^{(s)}
\end{aligned}
$$

the $O(\lambda)$ term in $G^{(4)}$ is

$$
\frac{1}{(4!)^{2}}(-\lambda) \int_{-\infty}^{\infty} d q e^{-\frac{1}{2} m^{2} q^{2}} q^{8}=\frac{7!!}{(4!)^{2}} \frac{1}{m^{8}}
$$

Connected versus disconnected

$$
\begin{aligned}
Z[J, \lambda] & =Z[J=0, \lambda] e^{w[J, \lambda]} \\
& =Z[J=0, \lambda] \sum_{N=0}^{\infty} \frac{1}{N!}[w(J, \lambda)]^{N}
\end{aligned}
$$

diagrams with no external source egg. ∞
W is a sum of connected diagrams

